

 Navigation

 	
 index

 	
 next |

 	CSVSee documentation

CSVSee

You are reading the documentation for CSVSee [http://www.automation-excellence.com/software/csvsee], a tool for manipulating and
visualizing data in comma-separated (CSV) files.

This software is open source, under the terms of the simplified BSD license [http://www.opensource.org/licenses/bsd-license.php].

	Motivation

	Features

	Installation
	Using virtualenv

	Usage
	csvs graph

	csvs grep

	csvs grinder

	Development
	Testing

	API
	csvsee

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

Motivation

This tool was originally developed to help with analyzing test results coming
from Grinder [http://grinder.sourceforge.net/] and Performance Monitor. It was partly inspired by Grinder
Analyzer [http://track.sourceforge.net/], which serves a similar purpose in a more specific domain.

Features

	Generate graphs of just about any numerical data, particularly those having timestamps

	Match one or more CSV column names with regular expressions

	Plot the top N data sets, by average or peak value within each column

	Automatic color-coding when graphing multiple columns

	Display graphs in an interactive viewer with zooming/panning capability

	Export graphs to a .png, .svg or .pdf file

	Customizable line styles, title / axis labels, and timestamp formats

	Automatic guessing of date/time format

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

Installation

You’ll need Python [http://python.org/download/] before doing anything else. Most Linux distributions already
have this installed, but you can use this to check:

$ which python
/usr/bin/python

To use the graphing features of CSVSee, you’ll need matplotlib [http://sourceforge.net/projects/matplotlib/files/matplotlib/matplotlib-0.99.1/]. On Ubuntu, this
should work:

$ sudo apt-get install python-matplotlib

If you want to install an official release, first download one from the
downloads page [https://launchpad.net/csvsee/+download], and extract it somewhere.

Then, open that directory in a terminal and run:

$ sudo python setup.py install

Or use pip [http://pypi.python.org/pypi/pip]:

$ sudo apt-get install python-pip
$ sudo pip install .

One advantage of using pip is that you can uninstall later like so:

$ sudo pip uninstall CSVSee

If you’d rather use a copy of the latest development version, clone it using
Git [http://git-scm.com/]:

$ git clone git://github.com/a-e/csvsee.git

then install as before using setup.py or pip.

Using virtualenv

There are some hassles when installing CSVSee’s dependencies in a virtualenv [http://www.virtualenv.org/en/latest/index.html].
Specifically, NumPy [http://sourceforge.net/projects/numpy/files/] and matplotlib [http://sourceforge.net/projects/matplotlib/files/matplotlib/matplotlib-0.99.1/] must be compiled from source, requiring
extra development headers and other dependencies that are not easily installable
using pip [http://pypi.python.org/pypi/pip]. For this reason, it’s strongly recommended that you just install
NumPy and matplotlib through your regular package manager (like apt-get).

If you really want to install them in a virtualenv, you could try this:

$ sudo apt-get install python-dev libpng-dev

In order to display an interactive graphing window, you’ll also need a GUI
backend that matplotlib can use. Qt4, Gtk, and Tkinter should all work. I use
Qt4:

$ sudo apt-get install python-qt4

Then you may be able to do:

$ pip install numpy
$ pip install matplotlib

But I make no promises. In fact, I couldn’t get it to work, so if you manage to
do so, please open an issue [http://github.com/a-e/csvsee/issues] describing how you did it, so I can include it in
this documentation.

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

Usage

csvs is the primary frontend for CSVSee. You can run this without arguments
to see what it expects. At minimum, you’ll need to provide the name of a
command. Currently, two commands are implemented:

	csvs graph: Generate graphs from .csv files

	csvs grep: Search in text files and generate a .csv file

	csvs grinder: Create .csv reports based on Grinder [http://grinder.sourceforge.net/] output file

csvs graph

The graph command is designed to generate graphs of comma-separated (.csv)
data files. It was originally designed for graphing data from the Windows
Performance Monitor tool, but it can also be used more generally to graph any
CSV data that includes timestamps.

The only thing you must provide is a filename.csv containing your data. By
default, the first column of data is used as the X-coordinate; if it’s a
timestamp, its format will be guessed.

You can optionally specify one or more regular expressions to match the column
names you want to graph. If you don’t provide these, all columns will be
graphed. All data must be integer or floating-point numeric values; anything
that isn’t a date or number will be plotted as a 0.

Column names can be specified as regular expressions that may match one or more
column headings in the .csv file. For example, if you have a file called
perfmon.csv with columns named like this:

"Eastern Time","CPU (user)","CPU (system)","CPU (idle)","Memory"

You can generate a graph of user, system, and idle CPU values over time like
this:

csvs graph perfmon.csv "CPU.*"

Run csvs graph without arguments to see full usage notes.

csvs grep

The grep command generates a .csv file by matching strings in one or
more timestamped log files. It would typically be used to generate a report of
how frequently certain messages or errors appear through time.

For example, if you have parrot.log containing:

2010/08/30 13:57:14 Pushing up the daisies
2010/08/30 13:58:08 Stunned
2010/08/30 13:58:11 Stunned
2010/08/30 14:04:22 Pining for the fjords
2010/08/30 14:05:37 Pushing up the daisies
2010/08/30 14:09:48 Pining for the fjords

And you wanted to see how often each of these phrases occur, do:

csvs grep parrot.log \
 -match "Stunned" "Pushing up the daisies" "Pining for the fjords" \
 -out parrot.csv

By default, the grep command counts the number of occurrences each minute,
so this would give you a .csv file looking something like this (whitespace
added for readability):

"Timestamp", "Stunned", "Pushing up the daisies", "Pining for the fjords"
2010/08/30 13:57, 0, 1, 0
2010/08/30 13:58, 2, 0, 0
2010/08/30 14:04, 0, 0, 1
2010/08/30 14:05, 0, 1, 0
2010/08/30 14:09, 0, 0, 1

You can change the resolution using the -seconds option. For example, to
count the occurrences each hour, use -seconds 3600.

Run csvs grep without arguments to see full usage notes.

csvs grinder

New in version 0.2.

The grinder command generates .csv files from Grinder [http://grinder.sourceforge.net/] logs. You must
provide the name of a out* file, and one or more data* files generated
from the same test run:

csvs grinder out-0.log data-*.log foo

This will write four .csv files in the current directory:

	foo_Errors.csv

	foo_HTTP_response_errors.csv

	foo_HTTP_response_length.csv

	foo_Test_time.csv

By default, statistics are summarized with a 60-second resolution; that is, all
statistics within each 60-second interval are summed (in the case of errors) or
averaged (in the case of response length and test time). To change the interval
resolution, pass the -seconds option. For instance, to summarize statistics
in 10-minute intervals:

csvs grinder -seconds 600 out-0.log data-*.log foo

Run csvs grinder without arguments to see full usage notes.

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

Development

If you’d like to hack on CSVSee, you’ll probably want to install the development
dependencies first:

$ pip install -r dev-req.txt

Testing

New in version 0.2.

CSVSee’s core modules include several doctests [http://docs.python.org/library/doctest.html], along with a suite of unit
tests in the tests directory that can be run with py.test [http://pytest.org/]:

$ py.test

To generate a coverage [http://nedbatchelder.com/code/coverage/] report, you can just get a plain-text report:

$ py.test --cov csvsee --cov-report=term-missing

Or a nice HTML report:

$ py.test --cov csvsee --cov-report=html

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

API

All of the supporting libraries are in a module called csvsee. You can
read the autogenerated documentation here:

	csvsee
	csvsee.dates

	csvsee.utils

	csvsee.graph

	csvsee.grinder

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

 	API

csvsee

The csvsee module provides most of the functionality of CSVSee.
It consists of the following submodules:

	csvsee.dates

	csvsee.utils

	csvsee.graph

	csvsee.grinder

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

 	API

 	csvsee

csvsee.dates

Date/time parsing and manipulation functions

	
exception csvsee.dates.CannotParse

	Failure to parse a date or time.

	
csvsee.dates.date_chop(line, dateformat='%m/%d/%y %I:%M:%S %p', resolution=60)

	Given a line of text, get a date/time formatted as dateformat,
and return a datetime object rounded to the nearest resolution
seconds. If line fails to match dateformat, a CannotParse
exception is raised.

Examples:

>>> date_chop('1976/05/19 12:05:17', '%Y/%m/%d %H:%M:%S', 60)
datetime.datetime(1976, 5, 19, 12, 5)

>>> date_chop('1976/05/19 12:05:17', '%Y/%m/%d %H:%M:%S', 3600)
datetime.datetime(1976, 5, 19, 12, 0)

	
csvsee.dates.format_regexp(simple_format)

	Given a simplified date or time format string, return (format,
regexp), where format is a strptime-compatible format string, and
regexp is a regular expression that matches dates or times in that
format.

The simple_format string supports a subset of strptime formatting
directives, with the leading % characters removed.

Examples:

>>> format_regexp('Y/m/d')
('%Y/%m/%d', '(?P<Y>\\d\\d\\d\\d)/(?P<m>\\d\\d?)/(?P<d>\\d\\d?)')

>>> format_regexp('H:M:S')
('%H:%M:%S', '(?P<H>[01]?[0-9]|2[0-3]):(?P<M>[0-5]\\d):(?P<S>[0-5]\\d)')

	
csvsee.dates.guess_file_date_format(filename)

	Open the given file and use guess_format to look for a
date/time at the beginning of each line. Return the format string for
the first one that’s found. Raise CannotParse if none is found.

	
csvsee.dates.guess_format(string)

	Try to guess the date/time format of string, or raise a
CannotParse exception.

Examples:

>>> guess_format('2010/01/28 13:25:49')
'%Y/%m/%d %H:%M:%S'

>>> guess_format('01/28/10 1:25:49 PM')
'%m/%d/%y %I:%M:%S %p'

>>> guess_format('01/28/2010 13:25:49.123')
'%m/%d/%Y %H:%M:%S.%f'

>>> guess_format('Aug 15 2009 15:24')
'%b %d %Y %H:%M'

>>> guess_format('3-14-15 9:26:53.589')
'%m-%d-%y %H:%M:%S.%f'

Leading and trailing text may be present:

>>> guess_format('FOO April 1, 2007 3:45 PM BAR')
'%B %d, %Y %I:%M %p'

>>> guess_format('[[2010-09-25 14:19:24]]')
'%Y-%m-%d %H:%M:%S'

	
csvsee.dates.parse(string, format)

	Attempt to parse the given string as a date in the given format.
This is similar to datetime.strptime, but this can handle date strings
with trailing characters. If it still fails to parse, raise a
CannotParse exception.

Examples:

>>> parse('2010/08/28', '%Y/%m/%d')
datetime.datetime(2010, 8, 28, 0, 0)

>>> parse('2010/08/28 extra stuff', '%Y/%m/%d')
datetime.datetime(2010, 8, 28, 0, 0)

>>> parse('2010/08/28', '%m/%d/%y')
Traceback (most recent call last):
CannotParse: time data '2010/08/28' does not match format '%m/%d/%y'

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

 	API

 	csvsee

csvsee.utils

Shared utility functions for the csvsee library.

	
exception csvsee.utils.NoMatch

	Exception raised when no column name matches a given expression.

	
class csvsee.utils.ProgressBar(end, prefix='', fill='=', units='secs', width=40)

	An ASCII command-line progress bar with percentage.

Adapted from Corey Goldberg’s version:
http://code.google.com/p/corey-projects/source/browse/trunk/python2/progress_bar.py

	
update(current)

	Set the current progress.

	
csvsee.utils.boring_columns(csvfile)

	Return a list of column names in csvfile that are “boring”–that is,
the data in them is always the same.

	
csvsee.utils.column_names(csv_file)

	Return a list of column names in the given .csv file.

	
csvsee.utils.filter_csv(csv_infile, csv_outfile, columns, match='regexp', action='include')

	Filter csv_infile and write output to csv_outfile.

	columns

	A list of regular expressions or exact column names

	match

	regexp to treat each value in columns as a regular
expression, exact to match exact literal column names

	action

	include to keep the specified columns, or exclude
to keep all columns except the specified columns

	
csvsee.utils.float_or_0(value)

	Try to convert value to a floating-point number. If
conversion fails, return 0.

Examples:

>>> float_or_0(5)
5.0

>>> float_or_0('5')
5.0

>>> float_or_0('five')
0

	
csvsee.utils.grep_files(filenames, matches, dateformat='guess', resolution=60, show_progress=True)

	Search all the given files for matching text, and return a list of
(timestamp, counts) for each match, where timestamp is a
datetime, and counts is a dictionary of {match: count},
counting the number of times each match was found during intervals of
resolution seconds.

	
csvsee.utils.line_count(filename)

	Return the total number of lines in the given file.

	
csvsee.utils.matching_fields(expr, fields)

	Return all fields that match a regular expression expr,
or raise a NoMatch exception if no matches are found.

Examples:

>>> matching_fields('a.*', ['apple', 'banana', 'avocado'])
['apple', 'avocado']

>>> matching_fields('a.*', ['peach', 'grape', 'kiwi'])
Traceback (most recent call last):
NoMatch: No matching column found for 'a.*'

	
csvsee.utils.matching_xy_fields(x_expr, y_exprs, fieldnames, verbose=False)

	Match x_expr and y_exprs to all available column names in
fieldnames, and return the matched x_column and y_columns.

Example:

>>> matching_xy_fields('x.*', ['y[12]', 'y[ab]'],
... ['xxx', 'y1', 'y2', 'y3', 'ya', 'yb', 'yc'])
('xxx', ['y1', 'y2', 'ya', 'yb'])

If x_expr is empty, the first column name is used:

>>> matching_xy_fields('', ['y[12]', 'y[ab]'],
... ['xxx', 'y1', 'y2', 'y3', 'ya', 'yb', 'yc'])
('xxx', ['y1', 'y2', 'ya', 'yb'])

If no match is found for any expression in y_exprs, a NoMatch
exception is raised:

>>> matching_xy_fields('', ['y[12]', 'y[jk]'],
... ['xxx', 'y1', 'y2', 'y3', 'ya', 'yb', 'yc'])
Traceback (most recent call last):
NoMatch: No matching column found for 'y[jk]'

	
csvsee.utils.read_xy_values(reader, x_column, y_columns, date_format='', gmt_offset=0, zero_time=False)

	Read values from a csv.DictReader, and return (x_values,
y_values). where x_values is a list of values found in x_column,
and y_values is a dictionary of {y_column: [values]} for each
column in y_columns.

Arguments:

	x_column

	Name of the column you want to use as the X axis.

	y_columns

	Names of columns you want to plot on the Y axis.

	date_format

	If given, treat values in x_column as timestamps
with the given format string.

	gmt_offset

	Add this many hours to every timestamp.
Only useful with date_format.

	zero_time

	If True, adjust timestamps so the earliest one starts at
00:00 (midnight). Only useful with date_format.

	
csvsee.utils.strip_prefix(strings)

	Strip a common prefix from a sequence of strings.
Return (prefix, [stripped]) where prefix is the string that is
common (with leading and trailing whitespace removed), and [stripped]
is all strings with the prefix removed.

Examples:

>>> strip_prefix(['first', 'fourth', 'fifth'])
('f', ['irst', 'ourth', 'ifth'])

>>> strip_prefix(['spam and eggs', 'spam and potatoes', 'spam and spam'])
('spam and', ['eggs', 'potatoes', 'spam'])

	
csvsee.utils.top_by(func, count, y_columns, y_values, drop=0)

	Apply func to each column, and return the top count column
names. Arguments:

	func

	A function that takes a list of values and returns a single value.
max, min, and average are good examples.

	count

	How many of the “top” values to keep

	y_columns

	A list of candidate column names. All of these must
exist as keys in y_values

	y_values

	Dictionary of {column: values} for each y-column. Must have
data for each column in y_columns (any extra column data will
be ignored).

	drop

	How many top values to skip before returning the next
count top columns

	
csvsee.utils.top_by_average(count, y_columns, y_values, drop=0)

	Determine the top count columns based on the average of values
in y_values, and return the filtered y_columns names.

	
csvsee.utils.top_by_peak(count, y_columns, y_values, drop=0)

	Determine the top count columns based on the peak value
in y_values, and return the filtered y_columns names.

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CSVSee documentation

 	API

 	csvsee

csvsee.graph

Provides a Graph class for creating graphs from .csv data files.

	
class csvsee.graph.Graph(csv_file, **kwargs)

	A graph of data from a CSV file.

	
add_date_labels(min_date, max_date)

	Add date labels to the graph.

	
generate()

	Generate the graph.

	
guess_date_format(date_column)

	Try to guess the date format used in the current .csv file, by
reading from the first row of the date_column column.

	
save(filename)

	Save the graph to filename. The format is determined by the
extension of filename; if it’s not png, svg, or pdf,
then a ValueError is raised.

	
show()

	Display the graph in a GUI window.

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	
 previous |

 	CSVSee documentation

 	API

 	csvsee

csvsee.grinder

New in version 0.2.

Tools for working with Grinder log output and generating CSV data.

This module defines three important classes:

	Bin: Statistics collected over a certain time interval

	Test: All statistics for a single Test in a Grinder test run

	Report: Collection of Test statistics and functions to write CSV reports

To generate reports, simply instantiate a Report instance, providing the
report granularity in seconds, the name of the out_* file, and at least one
data_* file generated by Grinder:

from csvsee import grinder
report = grinder.Report(60, 'out-0.log', 'data-0.log')

Or, if you have multiple data_* files:

report = grinder.Report(60, 'out-0.log', 'data-0.log', 'data-1.log', 'data-2.log')

The granularity determines how fine-grained the timestamps in your report will
be; with 60-second granularity, all statistics during each 60-second interval
are accumulated and reported together. For more detail, you could use 1-second
granularity:

report = grinder.Report(1, 'out-0.log', 'data-0.log')

but this will increase the size of your CSV data considerably and result in
much noisier-looking data. If you’re doing a long-term load test spanning
hours, you might use a larger value, say 10 minutes:

report = grinder.Report(600, 'out-0.log', 'data-0.log')

This will give smaller CSV files with smoother data, at the expense of some
detail; you won’t be able to see data spikes as easily.

Now, you can generate a bunch of predetermined CSV files like this:

report.write_all_csvs('my_results')

The given string will be prefixed all the CSV filenames.

	
class csvsee.grinder.Bin(stat_names)

	Accumulated statistics for an interval of time.

	
add(row)

	Accumulate a row of statistics in this bin.
All statistics are accumulated as integers.

	
average(stat)

	Return the integer average (mean) of the given statistic.

	
exception csvsee.grinder.NoTestNames

	Failure to find any test names in a Grinder out* file.

	
class csvsee.grinder.Report(granularity, grinder_outfile, *grinder_datafiles)

	A report of statistics for a Grinder test run.

	
add(row)

	Add a row from a data* file to the stats.

	
populate_stats()

	Add statistics for all tests in all Grinder data files.

	
timestamp_range()

	Return the (start, end) timestamps for this report, based
on the timestamps of all tests within it.

	
write_all_csvs(csv_prefix)

	Write all CSV files for this report to files with the given prefix.

	
write_csv(stat, filename)

	Write the given statistic for all tests to filename.

	
class csvsee.grinder.Test(number, name, granularity=1)

	Statistics for a single Test in a Grinder test run.

	
add(row)

	Add a row of statistics for this test.

	
stat_at_time(stat, timestamp)

	Return a statistic at the given timestamp (either sum or average).
Return 0 if there is no data at the given time.

	
timestamp_range()

	Return the (start, end) timestamps for this test.

	
csvsee.grinder.get_test_names(outfile)

	Return a dict of {number: name} for each test from the summary
portion of the given Grinder out* file. If the summary portion is
not found, look for test numbers and names as logged by grinder-webtest.

	
csvsee.grinder.grinder_files(include_dir)

	Return a list of full pathnames to all out* and data* files
found in descendants of include_dir.

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 Navigation

 	
 index

 	CSVSee documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	add() (csvsee.grinder.Bin method)

 	

 	(csvsee.grinder.Report method)

 	(csvsee.grinder.Test method)

 	add_date_labels() (csvsee.graph.Graph method)

 	

 	average() (csvsee.grinder.Bin method)

B

 	

 	Bin (class in csvsee.grinder)

 	

 	boring_columns() (in module csvsee.utils)

C

 	

 	CannotParse

 	column_names() (in module csvsee.utils)

 	csvsee.dates (module)

 	

 	csvsee.graph (module)

 	csvsee.grinder (module)

 	csvsee.utils (module)

D

 	

 	date_chop() (in module csvsee.dates)

F

 	

 	filter_csv() (in module csvsee.utils)

 	float_or_0() (in module csvsee.utils)

 	

 	format_regexp() (in module csvsee.dates)

G

 	

 	generate() (csvsee.graph.Graph method)

 	get_test_names() (in module csvsee.grinder)

 	Graph (class in csvsee.graph)

 	grep_files() (in module csvsee.utils)

 	

 	grinder_files() (in module csvsee.grinder)

 	guess_date_format() (csvsee.graph.Graph method)

 	guess_file_date_format() (in module csvsee.dates)

 	guess_format() (in module csvsee.dates)

L

 	

 	line_count() (in module csvsee.utils)

M

 	

 	matching_fields() (in module csvsee.utils)

 	

 	matching_xy_fields() (in module csvsee.utils)

N

 	

 	NoMatch

 	

 	NoTestNames

P

 	

 	parse() (in module csvsee.dates)

 	populate_stats() (csvsee.grinder.Report method)

 	

 	ProgressBar (class in csvsee.utils)

R

 	

 	read_xy_values() (in module csvsee.utils)

 	

 	Report (class in csvsee.grinder)

S

 	

 	save() (csvsee.graph.Graph method)

 	show() (csvsee.graph.Graph method)

 	

 	stat_at_time() (csvsee.grinder.Test method)

 	strip_prefix() (in module csvsee.utils)

T

 	

 	Test (class in csvsee.grinder)

 	timestamp_range() (csvsee.grinder.Report method)

 	

 	(csvsee.grinder.Test method)

 	top_by() (in module csvsee.utils)

 	

 	top_by_average() (in module csvsee.utils)

 	top_by_peak() (in module csvsee.utils)

U

 	

 	update() (csvsee.utils.ProgressBar method)

W

 	

 	write_all_csvs() (csvsee.grinder.Report method)

 	

 	write_csv() (csvsee.grinder.Report method)

 Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	0.2

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		CSVSee documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Automation Excellence.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

 		0.2

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

